

ADVANCED PHARMACEUTICAL BIOSTATISTICS

Dr. Mohammed S. Al-Lami PhD Pharmaceutics

Lect 5

Chi – square Test

Introduction

- Chi-square test offers an alternate method of testing the significance of difference between two proportions.
- Chi-square test involves the calculation of chi-square.
- Chi-square is derived from the greek letter 'chi' (X).
- 'Chi' is pronounced as 'Kye'.
- Chi-square was developed by Karl pearson 1900 DC.

- Chi-square test is a non-parametric test.
- It follows a specific distribution known as Chi-square distribution.

Calculation of Chi-square value

- The three essential requirements for Chi-square test are:
- A random sample
- Qualitative data
- Lowest expected frequency not less than 5

- The calculation of Chi-square value is as follows:
 - Make the contingency tables

-Note the frequencies observed (O) in each class of one event, rowwise and the number in each group of the other event, column-wise.

-Determine the expected number (E) in each group of the sample or the cell of table on the assumption of null hypothesis.

	Column 1	Column 2	Totals	
Row 1	A	В	\Rightarrow R1	
Row 2	C 🗖	D	\Rightarrow R2	
Totals	C1 🗸	C2	$\stackrel{\rm N}{\Rightarrow}$	

Example: Two gps A and B consist of 100 pt each, who have disease. A serum was given to gpA and not for gpB (can called control). It was found that in gp A and gp B 80 and 60 pt respectively were rcovered. Test the hypothesis that serum help to cure disease?

Observed Frequency

	Recovered	Not recoverd	Total
А	80	20	<mark>100</mark>
В	60	40	<mark>100</mark>
	140	60	<mark>200</mark>

Expected Frequency

	Recovered	Not recoverd	Total
A	$\frac{\frac{C1xR1}{N}}{\frac{140x100}{200}} = 70$	$\frac{C2xR1}{N} = \frac{60x100}{200} = \frac{30}{30}$	<mark>100</mark>
В	$\frac{\frac{C1xR2}{N}}{\frac{140x100}{200}} = 70$	$\frac{C2xR2}{N} = \frac{60x100}{200} = \frac{30}{30}$	<mark>100</mark>
	<mark>140</mark>	<mark>60</mark>	<mark>200</mark>

- Make the contingency tables

-Note the frequencies observed (O) in each class of one event, row-wise and the number in each group of the other event, column-wise.

-Determine the expected number (E) in each group of the sample or the cell of table on the assumption of null hypothesis.

- The hypothesis that there was no difference between the effect of the two frequencies, and then proceed to test the hypothesis in quantitative terms is called the Null hypothesis.

-Find the difference between the observed and the expected frequencies in each cell (O - E).

- Calculate the Chi-square values by the formula

-Sum up the Chi-square values of all the cells to get the total Chi-square value.

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected} = 9.524$$

DF = (c-1)(r-1) = (2-1)(2-1) = 1

Critical values of the Chi-square distribution with d degrees of freedom

	Probability of exceeding the critical value						
d	0.05	0.01	0.001	d	0.05	0.01	0.001
1	3.841	6.635	10.828	11	19.675	24.725	31.264
2	5.991	9.210	13.816	12	21.026	26.217	32.910
3	7.815	11.345	16.266	13	22.362	27.688	34.528
4	9.488	13.277	18.467	14	23.685	29.141	36.123
5	11.070	15.086	20.515	15	24.996	30.578	37.697
6	12.592	16.812	22.458	16	26.296	32.000	39.252
7	14.067	18.475	24.322	17	27.587	33.409	40.790
8	15.507	20.090	26.125	18	28.869	34.805	42.312
9	16.919	21.666	27.877	19	30.144	36.191	43.820
10	18.307	23.209	29.588	20	31.410	37.566	45.315

So reject hypothesis Of no relation

This indicate There is highly significant dependance of recovery on serum

INTRODUCTION TO POPULATION GENETICS, Table D.1

© 2013 Sinauer Associates, Inc.

	Much improve	Slightly improve	Not Improve	Total
Drug	60	32	28	<mark>120</mark>
Placebo	28	17	45	<mark>90</mark>
	88	49	73	<mark>210</mark>