ADYANCED
 PHARMACEUTICAL BIOSTATISTICS

Dr. Mohammed S. Al-Lami
PhD Pharmaceutics

Lect 5

Chiosquare Test

Introduction

- Chi-square test offers an alternate method of testing the significance of difference between two proportions.
- Chi-square test involves the calculation of chi-square.
- Chi-square is derived from the greek letter 'chi' (X).
- 'Chi' is pronounced as 'Kye'.
- Chi-square was developed by Karl pearson 1900 DC.
- Chi-square test is a non-parametric test.
- It follows a specific distribution known as Chi-square distribution.

Calculation of Chi-square value

- The three essential requirements for Chi-square test are:
- A random sample
- Qualitative data
- Lowest expected frequency not less than 5
- The calculation of Chi-square value is as follows:
- Make the contingency tables
-Note the frequencies observed (O) in each class of one event, rowwise and the number in each group of the other event, column-wise.
-Determine the expected number (E) in each group of the sample or the cell of table on the assumption of null hypothesis.

Example: Two gps A and B consist of 100 pt each, who have disease.
A serum was given to gpA and not for gpB (can called control).
It was found that in gp A and gp B 80 and 60 pt respectively were rcovered.
Test the hypothesis that serum help to cure disease?
Observed Frequency

	Recovered	Not recoverd	Total
A	80	20	100
B	60	40	100
	140	60	200

Expected Frequency

	Recovered	Not recoverd	Total
A	$\frac{C 1 x R 1}{N}$ $\frac{140 \times 100}{200}=70$	$\frac{C 2 x R 1}{N}=\frac{60 x 100}{200}=$	100
B	$\frac{C 1 \times R 2}{N}=$	$\frac{C 2 x R 2}{N}=\frac{60 \times 100}{200}=$	100
	$\frac{140 \times 100}{200}=70$	30	
	140	60	200

- The calculation of Chi-square value is as follows:
- Make the contingency tables
-Note the frequencies observed (O) in each class of one event, row-wise and the number in each group of the other event, column-wise.
-Determine the expected number (E) in each group of the sample or the cell of table on the assumption of null hypothesis.
- The hypothesis that there was no difference between the effect of the two frequencies, and then proceed to test the hypothesis in quantitative terms is called the Null hypothesis.
-Find the difference between the observed and the expected frequencies in each cell $(\mathrm{O}-\mathrm{E})$.
- Calculate the Chi-square values by the formula
-Sum up the Chi-square values of all the cells to get the total Chisquare value.

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}=9.524
$$

$$
D F=(c-1)(r-1)=(2-1)(2-1)=1
$$

Critical values of the Chi-square distribution with d degrees of freedom

| Probability of exceeding the critical value | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | 0.05 | 0.01 | 0.001 | | d | 0.05 | 0.01 | 0.001 | |
| 1 | 3.841 | 6.635 | 10.828 | | 11 | 19.675 | 24.725 | 31.264 | |
| 2 | 5.991 | 9.210 | 13.816 | | 12 | 21.026 | 26.217 | 32.910 | |
| 3 | 7.815 | 11.345 | 16.266 | | 13 | 22.362 | 27.688 | 34.528 | |
| 4 | 9.488 | 13.277 | 18.467 | | 14 | 23.685 | 29.141 | 36.123 | |
| 5 | 11.070 | 15.086 | 20.515 | | 15 | 24.996 | 30.578 | 37.697 | |
| 6 | 12.592 | 16.812 | 22.458 | | 16 | 26.296 | 32.000 | 39.252 | |
| 7 | 14.067 | 18.475 | 24.322 | | 17 | 27.587 | 33.409 | 40.790 | |
| 8 | 15.507 | 20.090 | 26.125 | | 18 | 28.869 | 34.805 | 42.312 | |
| 9 | 16.919 | 21.666 | 27.877 | | 19 | 30.144 | 36.191 | 43.820 | |
| 10 | 18.307 | 23.209 | 29.588 | 20 | 31.410 | 37.566 | 45.315 | | |

So
reject hypothesis Of no relation

This indicate There is highly significant dependance of recovery on serum

[^0]| | Much
 improve | Slightly improve | Not Improve | Total |
| :---: | :---: | :---: | :---: | :---: |
| Drug | 60 | $\mathbf{3 2}$ | $\mathbf{2 8}$ | 120 |
| Placebo | 28 | $\mathbf{1 7}$ | $\mathbf{4 5}$ | 90 |
| | 88 | 49 | 73 | 210 |

[^0]: INTRODUCTION TO POPULATION GENETICS, Table D. 1
 © 2013 Sinauer Associates, Inc.

